Combinatorial manifolds with complementarity

ثبت نشده
چکیده

Abstract. A simplicial complex is said to satisfy complementarity if exactly one of each complementary pair of nonempty vertex-sets constitutes a face of the complex. We show that if a d-dimensional combinatorial manifold M with n vertices satisfies complementarity then d = 0, 2, 4, 8 or 16 with n = 3d/2 + 3 and IMI is a "manifold like a projective plane". Arnoux and Marin had earlier proved the converse statement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Characterizations of K-matrices

We present a number of combinatorial characterizations of Kmatrices. This extends a theorem of Fiedler and Pták on linearalgebraic characterizations of K-matrices to the setting of oriented matroids. Our proof is elementary and simplifies the original proof substantially by exploiting the duality of oriented matroids. As an application, we show that a simple principal pivot method applied to th...

متن کامل

THE TOPOLOGY OF THE AdS/CFT/RANDALL-SUNDRUM COMPLEMENTARITY

The background geometries of the AdS/CFT and the Randall-Sundrum theories are locally similar, and there is strong evidence for some kind of “complementarity” between them; yet the global structures of the respective manifolds are very different. We show that this apparent problem can be understood in the context of a new and more complete global formulation of AdS/CFT. In this picture, the bra...

متن کامل

Combinatorial 3-manifolds with a cyclic automorphism group

In this article we substantially extend the classification of combinatorial 3-manifolds with cyclic automorphism group up to 22 vertices. Moreover, several combinatorial criteria are given to decide, whether a cyclic combinatorial d-manifold can be generalized to an infinite family of such complexes together with a construction principle in the case that such a family exist. In addition, a new ...

متن کامل

Constructing Combinatorial 4-manifolds

Every closed oriented PL 4-manifold is a branched cover of the 4-sphere branched over a PL-surface with finitely many singularities by Piergallini [Topology 34(3):497-508, 1995]. This generalizes a long standing result by Hilden and Montesinos to dimension four. Izmestiev and Joswig [Adv. Geom. 3(2):191-225, 2003] gave a combinatorial equivalent of the Hilden and Montesinos result, constructing...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Sign-Solvable Linear Complementarity Problems

This paper presents a connection between qualitative matrix theory and linear complementarity problems (LCPs). An LCP is said to be sign-solvable if the set of the sign patterns of the solutions is uniquely determined by the sign patterns of the given coefficients. We provide a characterization for sign-solvable LCPs such that the coefficient matrix has nonzero diagonals, which can be tested in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008